1. Introduction to Looping in C

Aloop is a flow control statement that allows a block of code to be executed repeatedly as long as a

given condition is true.
Loops reduce code repetition and make programs efficient and readable.

Why Loops Are Needed

e To perform repetitive tasks

e To process arrays and strings
e Toreduce program length

e Toimprove program clarity

2. Types of Looping Statements in C

C language provides three types of loops:

1. while loop
2. do-while loop
3. forloop

All loops consist of:

Initialization

Condition checking
Execution of statements
Increment / Decrement

3. while Loop

The while loop is an entry-controlled loop.
The condition is checked before executing the loop body.

Syntax
while(condition)

{

statements;

Working of while Loop

1. Condition is checked



2. If condition is true — loop body executes
3. Condition is checked again
4. Loop continues until condition becomes false

Example
inti=1;
while(i <= 5)
{

printf("%d ", i);

i++;

¢ When number of iterations is not known in advance

4. do—while Loop

The do-while loop is an exit-controlled loop.
The loop body executes at least once, even if the condition is false.

statements;

}

while(condition);

Example

printf("%d ", 1);
i++;

Difference from while Loop

o while: condition checked first
e do-while: condition checked last

5. for Loop

The for loop is best used when the number of iterations is known.



Syntax
for(initialization; condition; increment/decrement)

{

statements;

Example
int i;
for(i=1;i<=5;i++)

printf("%d ", i);

}

Advantages of for Loop

e Compact and readable
o Allloop control statements in one line

6. Comparison of Looping Statements

Feature while do-while for
Condition Check Before loop After loop Before loop
Minimum Execution 0 times 1 time 0 times
Use Case Unknown iterations At least once execution Known iterations

7. Nested Loops

When one loop is placed inside another loop, it is called a nested loop.

Example
inti, j;
for(i=1;i<=3;i++)
{ for(j=1;j<=3;j++)
i
printf("* ");

printf("\n");

Uses

o Pattern printing
e Matrix operations



8. Infinite Loops

Aloop that never terminates is called an infinite loop.

Example
while(1)
{

printf("Hello");

Reasons for Infinite Loops

e Missing increment/decrement
e Wrong condition

9. Loop Control Statements

9.1 break Statement

e Terminates the loop immediately

for(i=1;i<=10;i++)
{

if(i ==
break;
printf("%d ", i);

9.2 continue Statement

o Skips current iteration and continues with next

for(i=1;i<=5;i++)
{
if(i==

continue;
printf("%d ", i);

10. Common Loop Programs



10.1 Print Numbers from 1 to N
for(i=1;i<=n;i++)

printf|

10.2 Sum of Natural Numbers
int sum = 0;
for(i=1;i<=n;i++)

sum +=i;

10.3 Factorial of a Number
fact=1;

for(i=1;i<=n;i++)
fact *=1i;

11. Loop with Logical Conditions

Loops often use relational and logical operators.

Example
while(num > 0 && num < 100)
{

printf("Valid number");
break;

12. Common Errors in Loops

Infinite loops

Missing increment or decrement
Wrong condition

Extra semicolon after loop
Incorrect nesting

SANE ol

13. Advantages of Looping Statements

e Reduces code repetition
e Saves memory and time
e Improves readability

o Efficient execution



14. Limitations of Loops

e Complex logic may be hard to debug
e Infinite loops can crash programs
e Poorly designed loops reduce efficiency

15. Conclusion

Flow control loops are an essential part of C programming. The while, do-while, and for loops allow
efficient execution of repetitive tasks. Proper understanding of loops helps in writing logical, optimized,
and structured programs.



