
1. Introduction to Looping in C

A loop is a flow control statement that allows a block of code to be executed repeatedly as long as a
given condition is true.
Loops reduce code repetition and make programs efficient and readable.

Why Loops Are Needed

 To perform repetitive tasks
 To process arrays and strings
 To reduce program length
 To improve program clarity

2. Types of Looping Statements in C

C language provides three types of loops:

1. while loop
2. do–while loop
3. for loop

All loops consist of:

 Initialization
 Condition checking
 Execution of statements
 Increment / Decrement

3. while Loop

The while loop is an entry-controlled loop.
The condition is checked before executing the loop body.

Syntax
while(condition)
{
 statements;
}

Working of while Loop

1. Condition is checked

2. If condition is true → loop body executes
3. Condition is checked again
4. Loop continues until condition becomes false

Example
int i = 1;
while(i <= 5)
{
 printf("%d ", i);
 i++;
}

Uses

 When number of iterations is not known in advance

4. do–while Loop

The do–while loop is an exit-controlled loop.
The loop body executes at least once, even if the condition is false.

Syntax
do
{
 statements;
}
while(condition);

Example
int i = 1;
do
{
 printf("%d ", i);
 i++;
}
while(i <= 5);

Difference from while Loop

 while: condition checked first
 do–while: condition checked last

5. for Loop

The for loop is best used when the number of iterations is known.

Syntax
for(initialization; condition; increment/decrement)
{
 statements;
}

Example
int i;
for(i = 1; i <= 5; i++)
{
 printf("%d ", i);
}

Advantages of for Loop

 Compact and readable
 All loop control statements in one line

6. Comparison of Looping Statements
Feature while do–while for

Condition Check Before loop After loop Before loop

Minimum Execution 0 times 1 time 0 times

Use Case Unknown iterations At least once execution Known iterations

7. Nested Loops

When one loop is placed inside another loop, it is called a nested loop.

Example
int i, j;
for(i = 1; i <= 3; i++)
{
 for(j = 1; j <= 3; j++)
 {
 printf("* ");
 }
 printf("\n");
}

Uses

 Pattern printing
 Matrix operations

8. Infinite Loops

A loop that never terminates is called an infinite loop.

Example
while(1)
{
 printf("Hello");
}

Reasons for Infinite Loops

 Missing increment/decrement
 Wrong condition

9. Loop Control Statements

9.1 break Statement

 Terminates the loop immediately

for(i = 1; i <= 10; i++)
{
 if(i == 5)
 break;
 printf("%d ", i);
}

9.2 continue Statement

 Skips current iteration and continues with next

for(i = 1; i <= 5; i++)
{
 if(i == 3)
 continue;
 printf("%d ", i);
}

10. Common Loop Programs

10.1 Print Numbers from 1 to N
for(i = 1; i <= n; i++)
 printf("%d ", i);

10.2 Sum of Natural Numbers
int sum = 0;
for(i = 1; i <= n; i++)
 sum += i;

10.3 Factorial of a Number
fact = 1;
for(i = 1; i <= n; i++)
 fact *= i;

11. Loop with Logical Conditions

Loops often use relational and logical operators.

Example
while(num > 0 && num < 100)
{
 printf("Valid number");
 break;
}

12. Common Errors in Loops

1. Infinite loops
2. Missing increment or decrement
3. Wrong condition
4. Extra semicolon after loop
5. Incorrect nesting

13. Advantages of Looping Statements

 Reduces code repetition
 Saves memory and time
 Improves readability
 Efficient execution

14. Limitations of Loops

 Complex logic may be hard to debug
 Infinite loops can crash programs
 Poorly designed loops reduce efficiency

15. Conclusion

Flow control loops are an essential part of C programming. The while, do–while, and for loops allow
efficient execution of repetitive tasks. Proper understanding of loops helps in writing logical, optimized,
and structured programs.

